Solar Water Splitting: Progress Using Hematite (alpha-Fe2O3) Photoelectrodes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO2 in the form of sugars. These are achieved through a series of light-induced multielectron-tra ...
In order to be economically competitive with simple "brute force" (i.e., PV + electrolyzer) strategies or the production of promising solar fuels, like H-2, from fossil fuels, a practical photoelectrochemical device must optimize cost, longevity, and perfo ...
The world needs to think about the after fossil fuel era and while the sun baths the earth with a tremendous amount of energy, man must learn how to harvest and store it in order to dispose of a continuous supply meeting his needs. Water photo-electrolysis ...
The photoelectrochemical reduction of water or CO2 is a promising route to sustainable solar fuels but hinges on the identification of a stable photoanode for water oxidation. Semiconductor oxides like Fe2O3 and BiVO4 have been gaining significant attentio ...
Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like ...
A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy ...
The semiconducting materials used for photoelectrochemical (PEC) water splitting must withstand the corrosive nature of the aqueous electrolyte over long time scales in order to be a viable option for large scale solar energy conversion. Here we demonstrat ...
The tandem photoelectochemical (PEC) cell based on oxide semiconductors for water splitting offers a potentially inexpensive route for solar hydrogen generation. At the heart of the device, a nanostructured photoanode for water oxidation is connected in se ...
The actualization of a hydrogen economy requires cost-effective and environmentally benign solutions to hydrogen production. Chemical energy in the form of hydrogen is more interesting than electricity to satisfy our ever-increasing energy demand because i ...
Photoelectrochemical water-splitting devices, which use solar energy to convert water into hydrogen and oxygen, have been investigated for decades. Multijunction designs are most efficient, as they can absorb enough solar energy and provide sufficient free ...