Improvement of the one-dimensional dissolved-solute convection equation using the QUICKEST-ULTIMATE algorithm
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...
We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment based on a sediment concentration with a single momentum ...
This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formul ...
The multiquery solution of parametric partial differential equations (PDEs), that is, PDEs depending on a vector of parameters, is computationally challenging and appears in several engineering contexts, such as PDE-constrained optimization, uncertainty qu ...
A drift-kinetic model to describe the plasma dynamics in the scrape-off layer region of tokamak devices at arbitrary collisionality is derived. Our formulation is based on a gyroaveraged Lagrangian description of the charged particle motion, and the corres ...
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
In this work, we study the blood flow dynamics in idealized left ventricles (LV) of the human heart modelled by the Navier-Stokes equations with mixed time varying boundary conditions. The latter are introduced for simulating the functioning of the aortic ...
In stratified natural waters, convective processes tend to form nearly homogeneous mixed layers. However, shear‐driven turbulence generated by large‐scale background flow often rapidly smooths them through mixing with the stratified surroundings. Here we s ...
A greedy nonintrusive reduced order method (ROM) is proposed for parameterized time-dependent problems with an emphasis on problems in fluid dynamics. The nonintrusive ROM (NIROM) bases on a two-level proper orthogonal decomposition to extract temporal and ...
A numerical method based on an adaptive octree space discretization for the simulation of 3D free-surface fluid flows is proposed. The Navier-Stokes equations are solved with a time-splitting scheme, which decouples advection from diffusion/incompressibili ...