Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
TID and displacement damage effects are studied for vertical and lateral power MOSFETs in five different technologies in view of the development of radiation-tolerant fully integrated DC-DC converters. Investigation is pushed to the very high level of radiation expected for an upgrade to the LHC experiments. TID induces threshold voltage shifts and, in n-channel transistors, source-drain leakage currents. Wide variability in the magnitude of these effects is observed. Displacement damage increases the on-resistance of both vertical and lateral high-voltage transistors. In the latter case, degradation at high particle fluence might lead to a distortion of the output characteristics curve. HBD techniques to limit or eliminate the radiation-induced leakage currents are successfully applied to these high-voltage transistors, but have to be used carefully to avoid consequences on the breakdown voltage.