Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We derive a plausible learning rule updating the synaptic efficacies for feedforward, feedback and lateral connections between observed and latent neurons. Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimentally found results on Spike Time Dependent Plasticity, and in that they differ for excitatory and inhibitory neurons. A simulation confirms the method's applicability to learning both stationary and temporal spike patterns
Tilo Schwalger, Valentin Marc Schmutz
, ,