On the Relation of Slow Feature Analysis and Laplacian Eigenmaps
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Data is pervasive in today's world and has actually been for quite some time. With the increasing volume of data to process, there is a need for faster and at least as accurate techniques than what we already have. In particular, the last decade recorded t ...
This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of ma ...
Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent struct ...
Smartphone applications that use passive sensing to support human health and well-being primarily rely on: (a) generating low-dimensional representations from high-dimensional data streams; (b) making inferences regarding user behavior; and (c) using those ...
The goal of this report is to present you my semester project on signal generation for haptic interfaces using Reinforcement Learning algorithm. The aim of this project is to improve the signal generated by state of the art methods. The vibration are gener ...
Popular clustering algorithms based on usual distance functions (e.g., the Euclidean distance) often suffer in high dimension, low sample size (HDLSS) situations, where concentration of pairwise distances and violation of neighborhood structure have advers ...
Mining useful clusters from high dimensional data has received sig- nificant attention of the signal processing and machine learning com- munity in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome th ...
The amount of data that we produce and consume is larger than it has been at any point in the history of mankind, and it keeps growing exponentially. All this information, gathered in overwhelming volumes, often comes with two problematic characteristics: ...
We study a fixed point property for linear actions of discrete groups on weakly complete convex proper cones in locally convex topological vector spaces. We search to understand the class of discrete groups which enjoys this property and we try to generali ...
Clustering high-dimensional data often requires some form of dimensionality reduction, where clustered variables are separated from "noise-looking" variables. We cast this problem as finding a low-dimensional projection of the data which is well-clustered. ...