Bayesian inference from composite likelihoods, with an application to spatial extremes
Publications associées (59)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of positioning estimation with impulse radio (IR) ultra-wideband (UWB) radio under dense multipaths and additive Gaussian noise environments. Most popular positioning algorithms first estimate certain parameters (such as time of arr ...
Abstract Smartphones collect a wealth of information about their users' environment and activities. This includes GPS (global positioning system) tracks and the MAC (media access control) addresses of devices around the user, and it can go as far as taking ...
The last decade has seen max-stable processes emerge as a common tool for the statistical modeling of spatial extremes However, their application is complicated due to the unavailability of the multivariate density function and so likehhood-based methods r ...
Forensic speaker recognition is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). This paper aims at presenting forensic automatic speaker recognition (FASR) methods that provide ...
Springer-Verlag New York, Ms Ingrid Cunningham, 175 Fifth Ave, New York, Ny 10010 Usa2009
We consider the problem of ranging with Impulse Radio (IR) Ultra-WideBand (UWB) radio under weak Line Of Sight (LOS) environments and additive Gaussian noise. We use a Bayesian approach where the prior distribution of the channel follows the IEEE 802.15.4a ...
The linear model with sparsity-favouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertain ...
In this thesis, we focus on Impulse Radio (IR) Ultra-WideBand (UWB) ranging and positioning techniques under indoor propagation environments. IR-UWB, a new carrierless communication scheme using impulses, is a candidate technology for future communication, ...
We describe a method for aligning multiple unlabeled configurations simultane- ously. Specifically, we extend the two-configuration matching approach of Green and Mardia (2006) to the multiple configuration setting. Our approach is based on the in- troduct ...
The modern theory of likelihood inference provides improved inferences in many parametric models, with little more effort than is required for application of standard first-order theory. We outline the relevant computations, and illustrate the calculations ...
Extreme climate events have been investigated by many researchers in recent decades, and statisticians too have developed statistical tools capable of dealing with them. Although extreme value theory has been extensively developed and used in modelling eve ...