Publication

Using medical images acquired during routine clinical care for research purposes: a comprehensive medical informatics approach applied to the study of brain development from birth through 2 years of age as indexed by diffusion MRI

Vincent Alexis Roch
2011
Projet étudiant
Résumé

Biologic variability and dramatic changes of brain development in children aged 0 to 2 years make it challenging to accurately detect subtle abnormalities in single Magnetic Resonance Imaging (MRI) scans. Diffusion MRI (dMRI) indices such as Apparent Diffusion Coefficient (ADC) are reliable measures of water content in the brain and thus an excellent surrogate marker for brain development. Developing robust age-specific diffusion biomarkers for quantitative measurement of normative brain evolution would enhance our ability to detect subtle alterations due to tissue injuries or neuropathological disorders. Obtaining significant numbers of normative MRI scans for this age group means redirecting clinical data from hospital databases for research purposes. Therefore, this pilot project demonstrates the feasibility of identifying, retrieving and analyzing pediatric clinical dMRI data to investigate normal brain development from birth to 2 years. Research Patient Data Registry (RPDR) at Massachusetts General Hospital (MGH) was used to collect patient medical information and identify healthy children according to radiology reports. Corresponding MRI data were retrieved from MGH Picture Archiving and Communication System (PACS) using the prototype of Medical Imaging Informatics Bench to Bedside (mi2b2) software. A specific pipeline was created to handle the volume of studies and extract technical scan information used to identify comparable diffusion series; 193 studies were used for analysis. Two markers, whole brain average of ADC and Fractional Anisotropy (FA) values (WBAADC and WBAFA), were computed for each patient, their age-evolution across patients was investigated with different models. WBAADC and WBAFA seem to exhibit biexponential decay and increase respectively and might be gender-specific. These results have clinical implications for potentially determining the health status of an unknown individual, and research utility for continued development of these tools.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique
Concepts associés (43)
IRM de diffusion
L’IRM de diffusion est une technique basée sur l' (IRM). Elle permet de calculer en chaque point de l'image la distribution des directions de diffusion des molécules d'eau. Cette diffusion étant contrainte par les tissus environnants, cette modalité d'imagerie permet d'obtenir indirectement la position, l’orientation et l’anisotropie des structures fibreuses, notamment les faisceaux de matière blanche du cerveau. Le signal de résonance magnétique provient le plus souvent en IRM des noyaux d’hydrogène (protons).
Cerveau humain
Le 'cerveau humain' a la même structure générale que le cerveau des autres mammifères, mais il est celui dont la taille relative par rapport au reste du corps est devenue la plus grande au cours de l'évolution. Si la baleine bleue a le cerveau le plus lourd avec contre environ pour celui de l'homme, le coefficient d'encéphalisation humain est le plus élevé et est sept fois supérieur à celui de la moyenne des mammifères.
Imagerie médicale
L'imagerie médicale regroupe les moyens d'acquisition et de restitution d'images du corps humain à partir de différents phénomènes physiques tels que l'absorption des rayons X, la résonance magnétique nucléaire, la réflexion d'ondes ultrasons ou la radioactivité auxquels on associe parfois les techniques d'imagerie optique comme l'endoscopie. Apparues, pour les plus anciennes, au tournant du , ces techniques ont révolutionné la médecine grâce au progrès de l'informatique en permettant de visualiser indirectement l'anatomie, la physiologie ou le métabolisme du corps humain.
Afficher plus
Publications associées (79)

Development and clinical validation of computational imaging biomarkers for neurodegenerative diseases

Veronica Lily Ravano

Neurodegenerative and neuroinflammatory disorders often involve complex pathophysiological mechanisms that are – to this date – only partially understood. A more comprehensive understanding of those microstructural processes and their characterization ...
EPFL2024

Multiparametric Characterization and Spatial Distribution of Different MS Lesion Phenotypes

Tobias Kober, Tom Hilbert, Gian Franco Piredda

BACKGROUND AND PURPOSE: MS lesions exhibit varying degrees of axonal and myelin damage. A comprehensive description of lesion phenotypes could contribute to an improved radiologic evaluation of smoldering inflammation and remyelination processes. This stud ...
Amer Soc Neuroradiology2024

New insights into rodent brain microstructure and metabolism in hepatic encephalopathy

Jessie Julie Mosso

Type C hepatic encephalopathy (HE) is a severe neuropsychiatric complication of chronic liver disease, for which the prognosis is poor in the absence of liver transplantation. Cirrhosis in type C HE leads to a toxic accumulation of ammonia in the blood, wh ...
EPFL2023
Afficher plus
MOOCs associés (21)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.