Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present the M3 framework, a formal and generic computational framework for modeling and controlling distributed stochastic systems of purely reactive robots in an automated and real-time fashion. Based on the trajectories of the robots, the framework builds up an internal microscopic representation of the system, which then serves as a blueprint of models at higher abstraction levels. These models are then calibrated using a Maximum Likelihood Estimation (MLE) approach. We illustrate the structure and performance of the framework by performing the online optimization of a simple bang-bang controller for the stochastic self-assembly of water- floating passive robots. The experimental results demonstrate that the generated models can successfully optimize the assem- bly of desired structures.
Alcherio Martinoli, Cyrill Silvan Baumann, Wakana Endo
Aude Billard, Michael Bosongo Bombile