Publication

Evaluation of Atlas Fusion Strategies for Segmentation of Head and Neck Lymph Nodes for Radiotherapy Planning

Résumé

Accurate segmentation of lymph nodes in head and neck (H&N) CT images is essential for the radiotherapy planning of the H&N cancer. Atlas-based segmentation methods are widely used for the automated segmentation of such structures. Multi-atlas approaches are proven to be more accurate and robust than using a single atlas. We have recently proposed a general Markov random field (MRF)-based framework that can perform edge-preserving smoothing of the labels at the time of fusing the labels itself. There are three main contributions of this paper: First, we reformulate the "shape based averaging" (SBA) fusion method to fit into the general MRF-based fusion framework. Second, we evaluate the following fusion algorithms for the segmentation of H&N lymph nodes: (i) STAPLE, (ii) SBA, (iii) SBA+MRF, (iv) majority voting (MV), (v) MV+MRF, (vi) global weighted voting (GWV), (vii) GWV+MRF, (viii) local weighted voting (LWV) and (ix) LWV+MRF. Finally, we also study the effect varying the number of atlases on the performance of the above algorithms.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.