Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Accurate segmentation of lymph nodes in head and neck (H&N) CT images is essential for the radiotherapy planning of the H&N cancer. Atlas-based segmentation methods are widely used for the automated segmentation of such structures. Multi-atlas approaches are proven to be more accurate and robust than using a single atlas. We have recently proposed a general Markov random field (MRF)-based framework that can perform edge-preserving smoothing of the labels at the time of fusing the labels itself. There are three main contributions of this paper: First, we reformulate the "shape based averaging" (SBA) fusion method to fit into the general MRF-based fusion framework. Second, we evaluate the following fusion algorithms for the segmentation of H&N lymph nodes: (i) STAPLE, (ii) SBA, (iii) SBA+MRF, (iv) majority voting (MV), (v) MV+MRF, (vi) global weighted voting (GWV), (vii) GWV+MRF, (viii) local weighted voting (LWV) and (ix) LWV+MRF. Finally, we also study the effect varying the number of atlases on the performance of the above algorithms.
Rachid Guerraoui, Youssef Allouah, Oscar Jean Olivier Villemaud, Le Nguyen Hoang