Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Morphologie mathématiqueLa morphologie mathématique est une théorie et technique mathématique et informatique d'analyse de structures qui est liée avec l'algèbre, la théorie des treillis, la topologie et les probabilités. Le développement de la morphologie mathématique est inspiré des problèmes de , domaine qui constitue son principal champ d'application. Elle fournit en particulier des outils de filtrage, , quantification et modélisation d'images. Elle est également utilisable en traitement du signal, par exemple pour filtrer les variations d'une mesure (physique, biologique) au cours du temps.
Détection de contoursEn et en vision par ordinateur, on appelle détection de contours les procédés permettant de repérer les points d'une qui correspondent à un changement brutal de l'intensité lumineuse. Ces changements de propriétés de l' indiquent en général des éléments importants de structure dans l'objet représenté. Ces éléments incluent des discontinuités dans la profondeur, dans l'orientation d'une surface, dans les propriétés d'un matériau et dans l'éclairage d'une scène.
Dilation (morphology)Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for , it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image. In binary morphology, dilation is a shift-invariant (translation invariant) operator, equivalent to Minkowski addition. A binary image is viewed in mathematical morphology as a subset of a Euclidean space Rd or the integer grid Zd, for some dimension d.
Retouche numériqueImage editing encompasses the processes of altering s, whether they are digital photographs, traditional photo-chemical photographs, or illustrations. Traditional analog image editing is known as photo retouching, using tools such as an airbrush to modify photographs or editing illustrations with any traditional art medium. Graphic software programs, which can be broadly grouped into vector graphics editors, raster graphics editors, and 3D modelers, are the primary tools with which a user may manipulate, enhance, and transform images.
Closing (morphology)In mathematical morphology, the closing of a set () A by a structuring element B is the erosion of the dilation of that set, where and denote the dilation and erosion, respectively. In , closing is, together with opening, the basic workhorse of morphological noise removal. Opening removes small objects, while closing removes small holes. It is idempotent, that is, . It is increasing, that is, if , then . It is extensive, i.e., . It is translation invariant.
Opening (morphology)In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B: where and denote erosion and dilation, respectively. Together with closing, the opening serves in computer vision and as a basic workhorse of morphological noise removal. Opening removes small objects from the foreground (usually taken as the bright pixels) of an image, placing them in the background, while closing removes small holes in the foreground, changing small islands of background into foreground.
ImageUne image est une représentation visuelle, voire mentale, de quelque chose (objet, être vivant ou concept). Elle peut être naturelle (ombre, reflet) ou artificielle (sculpture, peinture, photographie), visuelle ou non, tangible ou conceptuelle (métaphore), elle peut entretenir un rapport de ressemblance directe avec son modèle ou au contraire y être liée par un rapport plus symbolique. Pour la sémiologie ou sémiotique, qui a développé tout un secteur de sémiotique visuelle, l'image est conçue comme produite par un langage spécifique.
Détection d'anomaliesDans l'exploration de données, la détection d'anomalies (en anglais, anomaly detection ou outlier detection) est l'identification d'éléments, d'événements ou d'observations rares qui soulèvent des suspicions en différant de manière significative de la majorité des autres données. Généralement, les anomalies indiquent un problème tel qu'une fraude bancaire, un défaut structurel, un problème médical ou une erreur dans un texte. Les anomalies sont également appelées des valeurs aberrantes, du bruit, des écarts ou des exceptions.