Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
A new biologically-inspired vision sensor made of one hundred "eyes" is presented, which is suitable for real-time acquisition and processing of 3-D image sequences. This device, named the Panoptic camera, consists of a layered arrangement of approximately 100 classical CMOS imagers, distributed over a hemisphere of 13cm in diameter. The Panoptic camera is a polydioptric system where all imagers have their own vision of the world, each with a distinct focal point, which is a specific feature of the Panoptic system. This enables 3-D information recording such as omnidirectional stereoscopy or depth estimation, applying specific signal processing. The algorithms dictating the image reconstruction of an omnidirectional observer located at any point inside the hemisphere are presented. A hardware architecture which has the capability of handling these algorithms, and the flexibility to support additional image processing in real time, has been developed as a two-layer system based on FPGAs. The detail of the hardware architecture, its internal blocks, the mapping of the algorithms onto the latter elements, and the device calibration procedure are presented, along with imaging results.
Pascal Fua, Cécile Hébert, Emadeddin Oveisi, Gulnaz Ganeeva, Anastasiia Mishchuk, Okan Altingövde