Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Quantum processors rely on classical electronic controllers to manipulate and read out the state of quantum bits (qubits). As the performance of the quantum processor improves, nonidealities in the classical controller can become the performance bottleneck ...
Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of ...
Many-body open quantum systems are exposed to an essentially uncontrollable environment that acts as a source of decoherence and dissipation. As the exact treatment of such models is generally unfeasible, it is favourable to formulate an approximate descri ...
The prospective of practical quantum computers has lead researchers to investigate automatic tools to program them. A quantum program is modeled as a Clifford+T quantum circuit that needs to be optimized in order to comply with quantum technology constrain ...
Quantum processors rely on classical electronic controllers to manipulate and read out the quantum state. As the performance of the quantum processor improves, non-idealities in the classical controller can become the performance bottleneck for the whole q ...
The possibility to simulate the properties of many-body open quantum systems with a large number of degrees of freedom (d.o.f.) is the premise to the solution of several outstanding problems in quantum science and quantum information. The challenge posed b ...
We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling of the Liouville–von Neumann time evolution of t ...
A quantum computer comprises a quantum processor and the associated control electronics used to manipulate the qubits at the core of a quantum processor. CMOS circuits placed close to the quantum bits and operating at cryogenic temperatures offer the best ...
Quantum computers hold the promise to solve some of the most complex problems of today. The core of a quantum computer is a quantum processor, which is composed of quantum bits (qubits). Qubits are fragile and their state needs to be corrected in real time ...
Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a mu ...