A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Macroscale and mesoscale simulations of hyper-concentrated sediment-laden flows rely on robust couplings of the Reynolds-Averaged Navier-Stokes equations in conjunction with the shear-stress transport k-ω turbulence model. Also other closure laws for model ...
In this paper we discuss partial differential equations with multiple scales for which scale resolution are needed in some subregions, while a separation of scale and numerical homogenization is possible in the remaining part of the computational domain. D ...
This paper presents a new method for the solution of multiscale stochastic differential equations at the diffusive time scale. In contrast to averaging-based methods, e.g., the heterogeneous multiscale method (HMM) or the equation-free method, which rely o ...
Contact of rough surfaces is of prime importance in the study of friction and wear. Numerical simulations are well suited for this non-linear problem, but natural surfaces being fractal [1], they have high discretization requirements. There is therefore a ...
We consider the following class of fractional Schrodinger equations: (-Delta)(alpha)u + V(x)u = K(x)f(u) in R-N, where alpha is an element of (0, 1), N > 2 alpha, (-Delta)(alpha) is the fractional Laplacian, V and K are positive continuous functions which ...
In this work, we focus on the Dynamical Low Rank (DLR) approximation of PDEs equations with random parameters. This can be interpreted as a reduced basis method, where the approximate solution is expanded in separable form over a set of few deterministic b ...
The multiquery solution of parametric partial differential equations (PDEs), that is, PDEs depending on a vector of parameters, is computationally challenging and appears in several engineering contexts, such as PDE-constrained optimization, uncertainty qu ...
During the past decade, model order reduction (MOR) has been successfully applied to reduce the computational complexity of elliptic and parabolic systems of partial differential equations (PDEs). However, MOR of hyperbolic equations remains a challenge. S ...
This thesis addresses the development and implementation of efficient and parallel algorithms for the numerical simulation of Fluid-Structure Interaction (FSI) problems in hemodynamics. Indeed, hemodynamic conditions in large arteries are significantly aff ...
We analyze the recent Multi-index Stochastic Collocation (MISC) method for computing statistics of the solution of a partial differential equation (PDE) with random data, where the random coefficient is parametrized by means of a countable sequence of term ...