Conditionnement classiquevignette|thumbtime=192|L'expérience du petit Albert. Le conditionnement classique (aussi appelé conditionnement répondant, conditionnement de type I ou conditionnement pavlovien) est proposé par Ivan Pavlov en 1903. La publication de son livre « Conditioned Reflexes: an Investigation of the Psysiological Activity of the Cerebral Cortex » en 1927 a laissé un impact majeur sur le développement de la psychologie. Cette théorie s'intéresse aux résultats d'un apprentissage dû à l'association entre des stimuli de l'environnement et les réactions inconditionnelles de l'organisme.
Synapsethumb|400px|Synapse entre deux neurones. La synapse (du grec , « contact, point de jonction », dérivé de , « joindre, connecter ») est une zone de contact fonctionnelle qui s'établit entre deux neurones, ou entre un neurone et une autre cellule (cellules musculaires, récepteurs sensoriels...). Elle assure la conversion d'un potentiel d'action déclenché dans le neurone présynaptique en un signal dans la cellule postsynaptique. On estime, pour certains types cellulaires (par exemple cellule pyramidale, cellule de Purkinje.
Système visuel humainLe est l'ensemble des organes participant à la perception visuelle humaine, de la rétine au système sensori-moteur. Son rôle est de percevoir et d'interpréter deux images en deux dimensions en une image en trois dimensions. Il est principalement constitué de l'œil (et plus particulièrement la rétine), des nerfs optiques, du chiasma optique, du tractus optique, du corps genouillé latéral, des radiations optiques et du cortex visuel. En première approximation, l'œil peut être assimilé à un appareil photographique.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
NeurotransmetteurLes neurotransmetteurs, ou neuromédiateurs, sont des composés chimiques libérés par les neurones (et parfois par les cellules gliales) agissant sur d'autres neurones, appelés neurones postsynaptiques, ou, plus rarement, sur d'autres types de cellules (comme les cellules musculaires et les cellules gliales comme les astrocytes). Les neurotransmetteurs sont stockés au niveau de l'élément présynaptique dans des vésicules. Le contenu de ces vésicules est libéré (de à molécules en moyenne) dans l'espace synaptique au moment de l'arrivée d'un potentiel d'action.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).
Temporal difference learningLe Temporal Difference (TD) learning est une classe d'algorithmes d'apprentissage par renforcement sans modèle. Ces algorithmes échantillonnent l'environnement de manière aléatoire à la manière des méthodes de Monte Carlo. Ils mettent à jour la politique (i.e. les actions à prendre dans chaque état) en se basant sur les estimations actuelles, comme les méthodes de programmation dynamique. Les méthodes TD ont un lien avec les modèles TD dans l'apprentissage animal. vignette|151x151px|Diagramme backup.
Système de classeursUn système de classeurs (Learning Classifier System ou LCS en anglais) est un système d'apprentissage automatique utilisant l'apprentissage par renforcement et les algorithmes génétiques. Ils ont été introduits par Holland en 1977 et développé par Goldberg en 1989 Un système de classeurs (aussi appelé classifiers) est composé d'une base de règles, appelée classeur, associés à un poids. Chaque règle est composée d'une partie condition et d'une partie action. Le classeur commence par être initialisé (aléatoirement ou non).
Cortex visuelLe occupe le lobe occipital du cerveau et est chargé de traiter les informations visuelles. Le cortex visuel couvre le lobe occipital, sur les faces latérales et internes, et empiète sur le lobe pariétal et le lobe temporal. L'étude du cortex visuel en neurosciences a permis de le découper en une multitude de sous-régions fonctionnelles (V1, V2, V3, V4, MT) qui traitent chacune ou collectivement des multiples propriétés des informations provenant des voies visuelles (formes, couleurs, mouvements).
Art conceptuelvignette|Art and Language, Untitled Painting, 1965 Courtesy Tate Modern L'art conceptuel est un mouvement de l'art contemporain apparu dans les années 1960 mais dont les origines remontent aux ready-made de Marcel Duchamp au début du . L'art est défini non par les propriétés esthétiques des objets ou des œuvres, mais seulement par le concept ou l'idée de l'art. L'art conceptuel n'est pas une période précise de l'art contemporain, ni un mouvement artistique structuré ou un groupe d'artistes précis.