Computational Reduction for Parametrized PDEs: Strategies and Applications
Publications associées (138)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation of Partial Differential Equations (PDEs). IGA is based on the isogeometric concept, for which the same basis functions, usually Non-Uniform Rational B-Splines (NURBS ...
The numerical solution of partial differential equations (PDEs) depending on para- metrized or random input data is computationally intensive. Reduced order modeling techniques, such as the reduced basis methods, have been developed to alleviate this compu ...
Mathematical models involving partial differential equations (PDE) arise in numerous applications ranging from Natural Sciences and Engineering to Economics. Random and stochastic PDE models become very powerful (and sometimes unavoidable) extensions of de ...
We numerically study the resistive method for the numerical approximation of elliptic PDEs. In particular we focus on the resistive method for weakly setting solution values in specific subdomains or interfaces in the domain. ...
The objective of this thesis is to develop efficient numerical schemes to successfully tackle problems arising from the study of groundwater flows in a porous saturated medium; we deal therefore with partial differential equations(PDE) having random coeffi ...
We propose a novel approach for smoothing on surfaces. More precisely, we aim at estimating functions lying on a surface, starting from noisy and discrete measurements. The surface is represented by NURBS, which are geometrical representations commonly use ...
In this paper we consider, from the numerical point of view, a thermoelastic diffusion porous problem. This is written as a coupled system of two hyperbolic equations, for the displacement and porosity fields, and two parabolic equations, for the temperatu ...
We consider the numerical approximation of lipid biomembranes, including red blood cells, described through the Canham-Helfrich model, according to which the shape minimizes the bending energy under area and volume constraints. Energy minimization is perfo ...
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2L2-gradient flow. We a ...
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2-gradient ow. We analy ...