Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Quantum-mechanical embedding methods have in recent years gained significant interest and may now be applied to predict a wide range of molecular properties calculated at different levels of theory. To reach a high level of accuracy in embedding methods, b ...
The spatial volume occupied by an atom depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent algorithms and packages to calculate it numerically for other materials. Three-d ...
We present a new QM-/QM/MM-based Model for calculating molecular properties and excited states,of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model, and represents an extension of our previously developed pol ...
The excited state properties of transition metal complexes have become a central focus of research owing to a wide range of possible applications that seek to exploit their luminescence properties. Herein, we use density functional theory (DFT), time-depen ...
Analysis of infrared spectra of palladium nanoparticles (NPs) immersed in the tri-tert-butyl-R-phosphonium-based ionic liquids (ILs) demonstrates that both cations and anions of the ILs interact with the NPs. According to quantum-chemical simulations of th ...
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model ...
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen enviro ...
The simulation of the color optical properties of molecular dyes in liquid solution requires the calculation of time evolution of the solute absorption spectra fluctuating in the solvent at finite temperature. Time-averaged spectra can be directly evaluate ...
Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this succe ...
We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfa ...