A fast iterative thresholding algorithm for wavelet-regularized deconvolution - art. no. 67010D
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, an approach is introduced based on differential operators to construct wavelet-like basis functions. Given a differential operator L with rational transfer function, elementary building blocks are obtained that are shifted replicates of the ...
We propose a generalization of the Cohen-Daubechies-Feauveau (CDF) and 9⁄7 biorthogonal wavelet families. This is done within the framework of non-stationary multiresolution analysis, which involves a sequence of embedded approximation spaces generated by ...
We present a generalization of the Daubechies wavelet family. The context is that of a non-stationary multiresolution analysis—i.e., a sequence of embedded approximation spaces generated by scaling functions that are not necessarily dilates of one another. ...
We build wavelet-like functions based on a parametrized family of pseudo-differential operators Lv that satisfy some admissibility and scalability conditions. The shifts of the generalized B-splines, which are localized versions of the Green func ...
I. Introduction Wavelets are the result of collective efforts that recognized common threads between ideas and concepts that had been independently developed and investigated by distinct research communities. They provide a unifying framework for decompos ...
We build a multiresolution analysis based on shift-invariant exponential B-spline spaces. We construct the basis functions for these spaces and for their orthogonal complements. This yields a new family of wavelet-like basis functions of L2 , wit ...
Efficient representation of geometrical information in images is very important in many image processing areas, including compression, denoising and feature extraction. However, the design of transforms that can capture these geometrical features and repre ...
The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a "true" two-dimensional transform that can c ...
We present a new family of two-dimensional and three-dimensional orthogonal wavelets which uses quincunx sampling. The orthogonal refinement filters have a simple analytical expression in the Fourier domain as a function of the order λ, which may be nonint ...
In this work, we study the effect of inserting spatially local temporal adaptivity to motion compensated frame adaptive transforms for video coding. Motion compensation aligns the temporal wavelet decomposition along motion trajectories. However, valid tra ...