Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
General-purpose processing on graphics processing unitsGPGPU est l'abréviation de general-purpose computing on graphics processing units, c'est-à-dire calcul générique sur processeur graphique. L'objectif de tels calculs est de bénéficier de la capacité de traitement parallèle des processeurs graphiques. Avant l'arrivée des GPGPU, le CPU, processeur central de l'ordinateur, traitait la plupart des opérations lourdes en calcul comme les simulations physiques, le rendu hors-ligne pour les films, les calculs de risques pour les institutions financières, la prévision météorologique, l'encodage de fichier vidéo et son Intel avec ses 80 % de parts de marché sur les CPU dominait donc très largement tous les besoins en calcul et pouvait en extraire de substantielles marges.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Multipath propagationIn radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. When the same signal is received over more than one path, it can create interference and phase shifting of the signal. Destructive interference causes fading; this may cause a radio signal to become too weak in certain areas to be received adequately.
Cyclic prefixIn telecommunications, the term cyclic prefix refers to the prefixing of a symbol with a repetition of the end. The receiver is typically configured to discard the cyclic prefix samples, but the cyclic prefix serves two purposes: It provides a guard interval to eliminate intersymbol interference from the previous symbol. It repeats the end of the symbol so the linear convolution of a frequency-selective multipath channel can be modeled as circular convolution, which in turn may transform to the frequency domain via a discrete Fourier transform.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Atténuation du signalvignette|296x296px|L'atténuation du signal en fonction de la fréquence et du temps laisse apparaître un motif nuageux sur un spectrogramme. Le temps est représenté sur l'axe horizontal, la fréquence sur l'axe vertical. L'intensité du signal apparaît en niveaux de gris. Dans les transmissions sans fil, l'atténuation du signal ou évanouissement (fading) est la variation de la puissance du signal causée par plusieurs variables. Ces variables incluent le temps, la position géographique et la fréquence.
Processeur réseauA network processor is an integrated circuit which has a feature set specifically targeted at the networking application domain. Network processors are typically software programmable devices and would have generic characteristics similar to general purpose central processing units that are commonly used in many different types of equipment and products.
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Compute kernelIn computing, a compute kernel is a routine compiled for high throughput accelerators (such as graphics processing units (GPUs), digital signal processors (DSPs) or field-programmable gate arrays (FPGAs)), separate from but used by a main program (typically running on a central processing unit). They are sometimes called compute shaders, sharing execution units with vertex shaders and pixel shaders on GPUs, but are not limited to execution on one class of device, or graphics APIs.