Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A decomposition of multicorrelation sequences for commuting transformations along primes, Discrete Analysis 2021:4, 27 pp. Szemerédi's theorem asserts that for every positive integer k and every δ>0 there exists n such that every subset of ${1, ...
Semi-discrete optimal transport problems, which evaluate the Wasserstein distance between a discrete and a generic (possibly non-discrete) probability measure, are believed to be computationally hard. Even though such problems are ubiquitous in statistics, ...
Background Coercion in psychiatry is a controversial issue. Identifying its predictors and their interaction using traditional statistical methods is difficult, given the large number of variables involved. The purpose of this study was to use machine-lear ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
The COVID-19 pandemic has demonstrated the importance and value of multi-period asset allocation strategies responding to rapid changes in market behavior. In this article, we formulate and solve a multi-stage stochastic optimization problem, choosing the ...
Surprise-based learning allows agents to rapidly adapt to nonstationary stochastic environments characterized by sudden changes. We show that exact Bayesian inference in a hierarchical model gives rise to a surprise-modulated trade-off between forgetting o ...
We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a pr ...
We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the space of probability measures, with Kullback-Leibler (KL) divergence as the objective functional. We show that an under-damped form of the Langevin algorithm perfor ...
We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be exp ...
We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a pr ...