A Box Spline Calculus for the Discretization of Computed Tomography Reconstruction Problems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present an explicit formula for B-spline convolution kernels; these are defined as the convolution of several B-splines of variable widths hi and degrees ni. We apply our results to derive spline-convolution-based algorithms for two closely related prob ...
Splines, which were invented by Schoenberg more than fifty years ago, constitute an elegant framework for dealing with interpolation and discretization problems. They are widely used in computer-aided design and computer graphics, but have been neglected i ...
We consider the problem of reconstructing superimposed temperature and wind flow fields from acoustic measurements. A new technique based solely on acoustic waves propagation is presented. In contrast to the usual straight ray assumption, a bent ray model ...
We develop a spline calculus for dealing with fractional derivatives. After a brief review of fractional splines, we present the main formulas for computing the fractional derivatives of the underlying basis functions. In particular, we show that the $ γ ^ ...
I. Introduction Wavelets are the result of collective efforts that recognized common threads between ideas and concepts that had been independently developed and investigated by distinct research communities. They provide a unifying framework for decompos ...
We develop a spline calculus for dealing with fractional derivatives. After a brief review of fractional splines, we present the main formulas for computing the fractional derivatives of the underlying basis functions. In particular, we show that the $ γ ...
We formulate the tomographic reconstruction problem in a variational setting. The object to be reconstructed is considered as a continuous density function, unlike in the pixel-based approaches. The measurements are modeled as linear operators (Radon trans ...
We present an explicit formula for spline kernels; these are defined as the convolution of several B-splines of variable widths h and degrees n. The spline kernels are useful for continuous signal processing algorithms that involve B-spline inner-products ...