The niche under siege: novel targets for metastasis therapy
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The Mesenchymal Stem Cell (MSC) is a self-renewing multipotent progenitor originally found in the bone marrow. It has drawn strong interest from translational research because of the multipotency of MSCs, their immunosuppression, their intrinsic homing and ...
The long-term risk of malignancy associated with stem cell therapies is a significant concern in the clinical application of this exciting technology. We report a cancer-selective strategy to enhance the safety of stem cell therapies. Briefly, using a cell ...
The in vitro expansion of hematopoietic stem cells (HSC) for clinical applications is hampered by a rapid loss of HSC blood reconstitution capability in culture. While these rare cells can be stimulated to massively proliferate, cell divisions mostly resul ...
Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successf ...
The appearance of clinically detectable metastases is the end-point of a complex set of biological processes only few cancer cells are capable to complete. Metastatic colonization comprises the most inefficient metastatic steps as it requires a fine-tuned ...
The development of drug resistance, the prime cause of failure in cancer therapy, is commonly explained by the selection of resistant mutant cancer cells. However, dynamic non-genetic heterogeneity of clonal cell populations continuously produces metastabl ...
Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. ...
Cold Spring Harbor Lab Press, Publications Dept2012
Cancer cells are unequal in a tumor mass and in established cultures. This is attributable to cancer stem cells with the unique ability to self-renew and to generate differentiating progeny. This ability is controlled at the level of asymmetric division by ...
Therapy‐resistant tumor cells often display EMT and stem cell‐like traits. The canonical Wnt pathway has been associated with these phenotypes in many cancer types. Our group has shown in mice that two proteins of this pathway, Bcl9 and Bcl9l, participate ...
Controlling alginate gel formation by diffusion of Ca2+ ions through a filter barrier, a layer-by-layer deposition technique with resolution on the size scale of a single cell is presented. It offers the possibility of exposing cells under biocompatible co ...