Publication

Subtle differences in virus composition affect disinfection kinetics and mechanisms

Résumé

Viral disinfection kinetics have been studied in depth, but the molecular-level inactivation mechanisms are not understood. Consequently, it is difficult to predict the disinfection behavior of non-culturable viruses, even when related, culturable viruses are available. The objective of this work was to determine how small differences in the composition of the viral genome and proteins impact disinfection. To this end, we investigated the inactivation of three related bacteriophages (MS2, fr and GA) by UV254, singlet oxygen (1O2), free chlorine (FC), and chlorine dioxide (ClO2). Genome damage was quantified by PCR, and protein damage was assessed by quantitative MALDI mass spectrometry. ClO2 caused great variability in the inactivation kinetics between viruses, and was the only treatment that did not induce genome damage. The inactivation kinetics were similar for all viruses when treated with disinfectants possessing a genome-damaging component (FC, 1O2 and UV254). On the protein level, UV254 subtly damaged MS2 and fr capsid proteins, whereas GA’s capsid remained intact. 1O2 oxidized a methionine residue in MS2, but did not affect the other two viruses. In contrast, FC and ClO2 rapidly degraded the capsid proteins of all three viruses. Protein composition alone could not explain the observed degradation trends; instead, molecular dynamics simulations indicated that degradation is dictated by the solvent-accessible surface area of individual amino acids. Finally, despite the similarities of the three viruses investigated, their mode of inactivation by a single disinfectant varied. This explains why closely related viruses can exhibit drastically different inactivation kinetics.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Virus
Un virus est un agent infectieux nécessitant un hôte, souvent une cellule, dont les constituants et le métabolisme déclenchent la réplication. Le nom virus a été emprunté au par Ambroise Paré au latin . La science des virus est la virologie, et ses experts sont des virologues ou virologistes. On considère de plus en plus les virus comme faisant partie des acaryotes. Ils changent de forme durant leur cycle, passant par deux stades : Une phase extracellulaire sous forme de particule virale.
Introduction to viruses
A virus is a tiny infectious agent that reproduces inside the cells of living hosts. When infected, the host cell is forced to rapidly produce thousands of identical copies of the original virus. Unlike most living things, viruses do not have cells that divide; new viruses assemble in the infected host cell. But unlike simpler infectious agents like prions, they contain genes, which allow them to mutate and evolve. Over 4,800 species of viruses have been described in detail out of the millions in the environment.
Dioxyde de chlore
Le dioxyde de chlore (ou bioxyde de chlore) est un gaz jaune rougeâtre, de formule ClO2, qui est l'un des divers oxydes connus du chlore. Le dioxyde de chlore est relativement stable dans ses états gazeux et liquide, mais prompt à exploser. En pratique, on ne l'utilise jamais à l'état pur. Désinfectant Blanchiment du papier, tissus, etc. Traitement de farines alimentaires (E926).
Afficher plus
Publications associées (39)

Influence of Amino Acid Substitutions in Capsid Proteins of Coxsackievirus B5 on Free Chlorine and Thermal Inactivation

Tamar Kohn, Aleksandar Antanasijevic, Kiruthika Kumar, Shotaro Torii

The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to inv ...
2024

Susceptibility of enveloped and non-enveloped viruses to ultraviolet light-emitting diode (UV-LED) irradiation and implications for virus inactivation mechanisms

Shotaro Torii

Ultraviolet (UV) light-emitting diodes (UV-LEDs), a disinfection technology, efficiently inactivate pathogens in water. However, the assessment of UV-LED treatment and the mechanisms of UV inactivation on viruses (especially enveloped viruses) are limited. ...
ROYAL SOC CHEMISTRY2023

Simultaneous membrane and RNA binding by Tick-Borne Encephalitis Virus capsid protein

Sarah Victoria Barrass

Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the end ...
PUBLIC LIBRARY SCIENCE2023
Afficher plus
MOOCs associés (11)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.