Finite-Size Supercell Correction for Charged Defects at Surfaces and Interfaces
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a comparison of the most common finite-size supercell correction schemes for charged defects in density functional theory calculations. Considered schemes include those proposed by Makov and Payne (MP), Lany and Zunger (LZ), and Freysoldt, Neuge ...
We investigate the structure and mobility of single self-interstitial atom and vacancy defects in body-centered-cubic transition metals forming groups 5B (vanadium, niobium, and tantalum) and 6B (chromium, molybdenum, and tungsten) of the Periodic Table. D ...
Calculations of formation energies and charge transition levels of defects routinely rely on density functional theory (DFT) for describing the electronic structure. Since bulk band gaps of semiconductors and insulators are not well described in semilocal ...
A robust, user-friendly, and automated method to determine quantum conductance in quasi-one-dimensional systems is presented. The scheme relies upon an initial density-functional theory calculation in a specific geometry after which the ground-state eigenf ...
Characterizing and predicting the nuclear dynamics of electronically excited molecules is of paramount importance to the understanding of photochemical and photophysical processes in molecules and to the development of new technologies in domains like sola ...
Various schemes for correcting the finite-size supercell errors in the case of charged defect calculations are analyzed and their performance for a series of defect systems is compared. We focus on the schemes proposed by Makov and Payne (MP), Freysoldt, N ...
Radiation defects in CdTe and ZnTe are modeled from first principles. The most important intrinsic defects resulting from cation evaporation or displacement are cation vacancies and tellurium anti-sites, electrically active defects characterized by a low f ...
We present a method for accelerating GW quasi-particle (QP) calculations. This is achieved through the introduction of optimal basis sets for representing polarizability matrices. First the real-space products of Wannier like orbitals are constructed and t ...
The adsorption of benzoic acid and its OH-substituted derivatives, namely, salicylic acid (SA) and parasalicylic acid on various NaCl surfaces has been investigated by density-functional theory with hybrid exchange-correlation functional. The ideal NaCl (1 ...
Understanding radiation-induced defect formation in carbon materials is crucial for nuclear technology and for the manufacturing of nanostructures with desired properties. Using first-principles molecular dynamics, we perform a systematic study of the none ...