A bottom-up stochastic model to predict building occupants' time-dependent activities
Publications associées (183)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider a general discrete state-space system with both unidirectional and bidirectional links. In contrast to bidirectional links, there is no reverse transition along the unidirectional links Herein, we first compute the statistical length and the th ...
In distributionally robust optimization the probability distribution of the uncertain problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses the worst distribution from within a known ambiguity set. A common shortcoming o ...
Measuring conditional dependencies among the variables of a network is of great interest to many disciplines. This paper studies some shortcomings of the existing dependency measures in detecting direct causal influences or their lack of ability for group ...
To assess the number of life-bearing worlds in astrophysical environments, it is necessary to take the intertwined processes of abiogenesis (birth), extinction (death), and transfer of life (migration) into account. We construct a mathematical model that i ...
We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven d ...
We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be exp ...
Let T be a measure-preserving Zℓ-action on the probability space (X,B,μ), let q1,…,qm:R→Rℓ be vector polynomials, and let f0,…,fm∈L∞(X). For any ϵ>0 and multicorrelation sequences of the form α(n)=∫Xf0⋅T⌊q1(n)⌋f1⋯T⌊qm(n)⌋fmdμ we show that there exis ...
Background Coercion in psychiatry is a controversial issue. Identifying its predictors and their interaction using traditional statistical methods is difficult, given the large number of variables involved. The purpose of this study was to use machine-lear ...
It is shown that, in the framework of Scale Relativity Theory, correlations of type informational entropy/cross entropy - probability density, in the description of the dynamics of any complex system, can be perceived as interactions. Explaining these inte ...
The aim of this work is to provide bounds connecting two probability measures of the same event using Rényi α-Divergences and Sibson’s α-Mutual Information, a generalization of respectively the Kullback-Leibler Divergence and Shannon’s Mutual ...