Loi de probabilité d'entropie maximaleEn statistique et en théorie de l'information, une loi de probabilité d'entropie maximale a une entropie qui est au moins aussi grande que celle de tous les autres membres d'une classe spécifiée de lois de probabilité. Selon le principe d'entropie maximale, si rien n'est connu sur une loi , sauf qu'elle appartient à une certaine classe (généralement définie en termes de propriétés ou de mesures spécifiées), alors la loi avec la plus grande entropie doit être choisie comme la moins informative par défaut.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Phénomène de GibbsEn mathématiques, lors de l'étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d'une discontinuité, lors de l'analyse d'une fonction dérivable par morceaux. Le phénomène fut mis pour la première fois en évidence en 1848 par Henry Wilbraham, mais cette découverte ne connut guère d'écho.
Décalage de Bernoulli (mathématiques)Le décalage de Bernoulli (également connu comme fonction dyadique ou fonction 2x mod 1) est l'application produite par la règle De façon équivalente, le décalage de Bernoulli peut également être défini comme la fonction itérée de la fonction affine par parties Le décalage de Bernoulli fournit un exemple de la manière dont une simple fonction unidimensionnelle peut mener au chaos. Si x0 est rationnel, l'image de x0 contient un nombre fini de valeurs différentes dans [0 ; 1] et l'orbite positive de x0 est périodique à partir d'un certain point, avec la même période que le développement binaire de x0.
Transformation du boulangerLa transformation du boulanger est une transformation basée sur l'idée d'un mélange analogue au pétrissage par un boulanger qui étire une pâte jusqu'à ce qu'elle soit d'épaisseur moitié, puis la coupe en deux et superpose les deux moitiés pour lui redonner sa dimension initiale, et ainsi de suite. Ce mélange est souvent évoqué en théorie du chaos. Dans ce cas, il s'agit d'une version continue de la transformation. Une version discrète de cette transformation existe aussi pour manipuler des images informatiques.
Generalized hypergeometric functionIn mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series.
Opérateur de transfertEn mathématiques, l'opérateur de transfert encode l'information d'une application itérée et est fréquemment utilisé pour étudier le comportement des systèmes dynamiques, de la mécanique statistique, du chaos quantique et des fractales. L'opérateur de transfert est quelquefois appelé l'opérateur de Ruelle, en l'honneur de David Ruelle, ou l'opérateur de Ruelle-Perron-Frobenius faisant référence à l'applicabilité du théorème de Perron-Frobenius pour la détermination des valeurs propres de l'opérateur.
Convergence of Fourier seriesIn mathematics, the question of whether the Fourier series of a periodic function converges to a given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp spaces, summability methods and the Cesàro mean.