Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Modèle de Hubbardvignette|Modèle de Hubbard à deux dimensions. Le modèle de Hubbard est un modèle étudié en théorie de la matière condensée. Il décrit des fermions (généralement des électrons) sur un réseau (en général les atomes qui forment un solide), qui interagissent uniquement lorsqu'ils se trouvent sur le même site (c'est-à-dire sur le même atome). Ce modèle a été introduit en 1963 à peu près simultanément par , Martin C. Gutzwiller et Junjiro Kanamori. Il est parfois appelé modèle de Hubbard-Gutzwiller-Kanamori pour cette raison.
Asymptotic safety in quantum gravityAsymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.
Mécanique quantique relativisteEn physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Ordre des motsEn syntaxe, l’ordre des mots se réfère premièrement à la succession de ces unités dans le syntagme et des syntagmes dans la phrase simple, ainsi que dans la proposition faisant partie d’une phrase complexe. Dans un sens plus large, il concerne aussi l’ordre des propositions dans la phrase complexe. Certains auteurs mentionnent que, s’agissant de mots à fonction syntaxique, la question de leur ordre regarde non seulement la façon dont ils se succèdent, mais aussi la position plus ou moins éloignée des uns par rapport aux autres, l’ordre des mots ayant par conséquent une composante succession et une composante proximité/éloignement.
PhotonLe photon est le quantum d'énergie associé aux ondes électromagnétiques (allant des ondes radio aux rayons gamma en passant par la lumière visible), qui présente certaines caractéristiques de particule élémentaire. En théorie quantique des champs, le photon est la particule médiatrice de l’interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d’un point de vue quantique comme un échange de photons.
Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Exposant critiqueLors d'une transition de phase de deuxième ordre, au voisinage du point critique, les systèmes physiques ont des comportements universels en lois de puissances caractérisées par des exposants critiques. Au point critique, un fluide est caractérisé par une température critique et une densité critique . Pour une température légèrement supérieure à (à nombre de particules et volume constants), le système est homogène avec une densité . Pour une température légèrement inférieure à , il y a une séparation de phase entre une phase liquide (de densité ) et une phase gazeuse (de densité ).
Landau poleIn physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues. The fact that couplings depend on the momentum (or length) scale is the central idea behind the renormalization group. Landau poles appear in theories that are not asymptotically free, such as quantum electrodynamics (QED) or φ4 theory—a scalar field with a quartic interaction—such as may describe the Higgs boson.