Publication

"Self pop-out": agency enhances self-recognition in visual search

Résumé

In real-life situations, we are often required to recognize our own movements among movements originating from other people. In social situations, these movements are often correlated (for example, when dancing or walking with others) adding considerable difficulty to self-recognition. Studies from visual search have shown that visual attention can selectively highlight specific features to make them more salient. Here, we used a novel visual search task employing virtual reality and motion tracking to test whether visual attention can use efferent information to enhance self-recognition of one's movements among four or six moving avatars. Active movements compared to passive movements allowed faster recognition of the avatar moving like the subject. Critically, search slopes were flat for the active condition but increased for passive movements, suggesting efficient search for active movements. In a second experiment, we tested the effects of using the participants' own movements temporally delayed as distractors in a self-recognition discrimination task. We replicated the results of the first experiment with more rapid self-recognition during active trials. Importantly, temporally delayed distractors increased reaction times despite being more perceptually different than the spatial distractors. The findings demonstrate the importance of agency in self-recognition and self-other discrimination from movement in social settings.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.