F-divergenceIn probability theory, an -divergence is a function that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of -divergence. These divergences were introduced by Alfréd Rényi in the same paper where he introduced the well-known Rényi entropy. He proved that these divergences decrease in Markov processes.
Consensus forecastUsed in a number of sciences, ranging from econometrics to meteorology, consensus forecasts are predictions of the future that are created by combining several separate forecasts which have often been created using different methodologies. Also known as combining forecasts, forecast averaging or model averaging (in econometrics and statistics) and committee machines, ensemble averaging or expert aggregation (in machine learning).
Vérité logiqueLa vérité logique est l'un des concepts les plus fondamentaux de la logique. D'une manière générale, une vérité logique est une proposition qui est vraie indépendamment de la vérité ou la fausseté de ses propositions constitutives. En d'autres termes, une vérité logique est une affirmation qui n'est pas seulement vraie, mais qui est vraie sous toutes les interprétations de ses composants logiques (autres que ses constantes logiques). Ainsi, des vérités logiques telles que "si p, alors p" peuvent être considérées comme des tautologies.
Valeur de véritéUne valeur de vérité est une valeur attribuée à chaque proposition logique. Pour donner une valeur de vérité à une proposition, on attribue des valeurs de vérité aux variables qu'elle contient. La valeur d'une proposition formés de deux propositions P et Q et d'un connecteur est calculée à partir des valeurs de vérité attribuées à P et à Q. Ainsi la valeur de vérité attribuée à « P et Q » sera « p.q » où « . » est la multiplication. En conséquence, P et Q est vrai si et seulement si P et Q sont chacun vrais.
Table de véritéUne table de vérité (parfois appelée fonction de vérité) est une table mathématique utilisée en logique classique — en particulier le calcul propositionnel classique et l'algèbre de Boole — pour représenter de manière sémantique des expressions logiques et calculer la valeur de leur fonction relativement à chacun de leurs arguments fonctionnels (chaque combinaison de valeur assumée par leurs variables logiques).
Théorie sémantique de la véritéUne théorie sémantique de la vérité est une théorie de la vérité en philosophie du langage qui soutient que la vérité est une propriété des phrases. La conception sémantique de la vérité, qui est liée de différentes façons à la correspondance et aux conceptions déflationnistes, est due au travail publié par le logicien polonais Alfred Tarski dans les années 1930. Tarski, dans « On the Concept of Truth in Formalized Languages », a tenté de formuler une nouvelle théorie de la vérité afin de résoudre le paradoxe du menteur.
Technology forecastingTechnology forecasting attempts to predict the future characteristics of useful technological machines, procedures or techniques. Researchers create technology forecasts based on past experience and current technological developments. Like other forecasts, technology forecasting can be helpful for both public and private organizations to make smart decisions. By analyzing future opportunities and threats, the forecaster can improve decisions in order to achieve maximum benefits.
QuinteEn musique, une quinte, ou quinte juste, est un intervalle entre deux notes séparées par cinq degrés. Elle a une étendue de trois tons et un demi-ton diatonique (soit sept demi-tons). Son renversement est la quarte. La quinte diminuée ou triton est composée de trois tons (ou six demi-tons). Jusqu'à la fin du , la quinte parfaite était le plus souvent appelée par son nom grec issu du pythagorisme : le diapente.
Perfect fourthA fourth is a musical interval encompassing four staff positions in the music notation of Western culture, and a perfect fourth () is the fourth spanning five semitones (half steps, or half tones). For example, the ascending interval from C to the next F is a perfect fourth, because the note F is the fifth semitone above C, and there are four staff positions between C and F. Diminished and augmented fourths span the same number of staff positions, but consist of a different number of semitones (four and six, respectively).
Symmetric differenceIn mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is . The symmetric difference of the sets A and B is commonly denoted by or The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse.