Investigations of Quench Limits of the LHC Superconducting Magnets
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The scope of the Large Hadron Collider Hi-Lumi Project at CERN includes the installation of several superconducting magnets wound with Nb3Sn Rutherford cables. The quench level of these magnets (i.e. the maximum energy that a cable can tolerate without que ...
High temperature superconducting (HTS) materials have the potential to generate a magnetic field beyond the level obtainable with low temperature superconducting (LTS) materials. This review reports on past and present R&D on HTS cables and conductors for ...
A future circular collider (FCC) with a center-of-mass energy of 100 TeV and a circumference of around 100 km, or an energy upgrade of the LHC (HE-LHC) to 27 TeV require bending magnets providing 16 Tin a SO-mm aperture. Several development programs for th ...
In a synchrotron accelerator, the beam trajectory is controlled thanks to magnets, where superconducting technology allows to generate very strong magnetic fields. This was a key element in the construction of the Large Hadron Collider (LHC), the world lar ...
The Large Hadron Collider (LHC) at CERN is being prepared for its full energy exploitation during Run III, i.e. an increase of the beam energy beyond the present 6.5 TeV, targeting the maximum discovery potential attainable. This requires an increase of th ...
As a result of extremely high upper critical fields B_c2, high temperature superconductors (HTS) have the potential to be used as high field insert coils in magnet systems where the background field is provided by low temperature superconductors (LTS) with ...
The next generation magnetic spectrometer in space, AMS-100, is designed to have a geometrical acceptance of 100 m(2) sr and to be operated for at least ten years at the Sun-Earth Lagrange Point 2. Compared to existing experiments, it will improve the sens ...
Recent progresses in the second generation REBa2Cu3O7-x (RE123) coated conductor (CC) have paved a way for the development of superconducting solenoids capable of generating fields well above 23.5 T, i.e. the limit of NbTi-Nb3Sn-based magnets. However, the ...
The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Co ...
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A ...