Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
As more applications migrate to the cloud, and as “big data” edges into even more production environments, the performance and simplicity of exchanging data between compute nodes/devices is increasing in importance. An issue central to distributed programming, yet often under-considered, is serialization or pickling, i.e., persisting runtime objects by converting them into a binary or text representation. Pickler combinators are a popular approach from functional programming; their composability alleviates some of the tedium of writing pickling code by hand, but they don’t translate well to object-oriented programming due to qualities like open class hierarchies and subtyping polymorphism. Furthermore, both functional pickler combinators and popular, Java-based serialization frameworks tend to be tied to a specific pickle format, leaving programmers with no choice of how their data is persisted. In this paper, we present object-oriented pickler combinators and a framework for generating them at compile-time, called scala/pickling, designed to be the default serialization mechanism of the Scala programming language. The static generation of OO picklers enables significant performance improvements, outperforming Java and Kryo in most of our benchmarks. In addition to high performance and the need for little to no boilerplate, our framework is extensible: using the type class pattern, users can provide both (1) custom, easily interchangeable pickle formats and (2) custom picklers, to override the default behavior of the pickling framework. In benchmarks, we compare scala/pickling with other popular industrial frameworks, and present results on time, memory usage, and size when pickling/unpickling a number of data types used in real-world, large-scale distributed applications and frameworks.
Martin Odersky, Olivier Eric Paul Blanvillain
Yichen Xu, Lionel Emile Vincent Parreaux, Aleksander Slawomir Boruch-Gruszecki