We have investigated how a magnetic field applied perpendicular to the CuO2 planes of the near-optimally hole-doped high-temperature superconductor La1.855Sr0.145CuO4 (Tc ≈36 K) influences the low-energy magnetic excitation spectrum. Our detailed single-crystal neutron scattering experiments reveal that the gap to magnetic excitations falls off linearly with increasing field and reaches zero at the magnetic field µ0Hs=7±1 T required to induce long-range incommensurate magnetic order. A comparison with the electron-doped cuprate Nd1.85Ce0.15CuO4 is made and the possible link between field-induced magnetic order and Fermi surface reconstruction in cuprates is discussed.
Bruce Normand, Ying Chen, Sheng Xu, Shuo Li, Xiaoyu Xu, Zeyu Wang, Weiqiang Yu
Ellen Fogh, Sofie Janas, Paola Caterina Forino