Successful Reconstruction of a Physiological Circuit with Known Connectivity from Spiking Activity Alone
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs ...
In the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings. We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes via gradient ascent the likelihood of postsynaptic firing at one or sever ...
Gamma band (30-80 Hz) oscillations arising in neuronal ensembles are thought to be a crucial component of the neural code. Recent studies in animals suggest a similar functional role for very high frequency oscillations (VHFO) in the range 80-200Hz. Since ...
We demonstrate that single-variable integrate-and-fire models can quantitatively capture the dynamics of a physiologically-detailed model for fast-spiking cortical neurons. Through a systematic set of approximations, we reduce the conductance based model t ...
Maximization of information transmission by a spiking-neuron model predicts changes of synaptic connections that depend on timing of pre- and postsynaptic spikes and on the postsynaptic membrane potential. Under the assumption of Poisson firing statistics, ...
We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. We describe a systematic method to estimate its parameters with simple electrophysiologi ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes via gradient ascent the likelihood of postsynaptic firing at one or sever ...
This work investigates the capacity of Integrate-and-Fire-type (I&F-type) models to quantitatively predict spike trains of real neurons in various laboratory and in vivo-like settings. A step-by-step methodology is developed to build an equivalent effectiv ...
We investigate the performance of sparsely-connected networks of integrate-and-fire neurons for ultra-short term information processing. We exploit the fact that the population activity of networks with balanced excitation and inhibition can switch from an ...