Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Contrôle du bruitalt=|vignette| Sonomètre Le contrôle du bruit, sa gestion ou atténuation, sont les efforts déployés, en tout domaine, pour diminuer la pollution sonore et limiter l'impact du bruit, tant à l'extérieur qu'à l'intérieur des bâtiments et autres structures habitées. Parmi les principaux domaines concernés par le contrôle, d'atténuation ou de réduction du bruit figurent : le contrôle du bruit des transports (trafic routier, ferroviaire, aérien, des navires dans les ports, etc), la conception architecturale et l'urbanisme (via notamment des codes de zonage) ou encore le contrôle du bruit au travail.
Campbell's theorem (probability)In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the expectation of a function summed over a point process to an integral involving the mean measure of the point process, which allows for the calculation of expected value and variance of the random sum. One version of the theorem, also known as Campbell's formula, entails an integral equation for the aforementioned sum over a general point process, and not necessarily a Poisson point process.
Dimensional regularizationNOTOC In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini as well as – independently and more comprehensively – by 't Hooft and Veltman for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number of spacetime dimensions. Dimensional regularization writes a Feynman integral as an integral depending on the spacetime dimension d and the squared distances (xi−xj)2 of the spacetime points xi, .