Efficient Solution of Ordinary Differential Equations with High-Dimensional Parametrized Uncertainty
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, An ...
A lumped parameter, state space model for a tokamak transformer including the slow flux penetration in the plasma (skin effect transformer model) is presented. The model does not require detailed or explicit information about plasma profiles or geometry. I ...
The fractional Laplacian (-Delta)(gamma/2) commutes with the primary coordination transformations in the Euclidean space Rd: dilation, translation and rotation, and has tight link to splines, fractals and stable Levy processes. For 0 < gamma < d, its inver ...
In this report we study and compare particular integration methods to solve ordinary differential equations, which are separable in solvable parts. The main source for this work is the article of Blanes and Casas: "On the necessity of negative coefficient ...
We investigate systems of ordinary differential equations with a parameter. We show that under suitable assumptions on the systems the solutions are computable in the sense of recursive analysis. As an application we give a complete characterization of the ...
Consider a diffusion field induced by a finite number of localized and instantaneous sources. In this paper, we study the problem of estimating these sources (including their intensities, spatial locations, and activation time) from the spatiotemporal samp ...
We consider the long time behavior of the semidiscrete scheme for the Perona-Malik equation in one dimension. We prove that approximated solutions converge, in a slow time scale, to solutions of a limit problem. This limit problem evolves piecewise constan ...
In this thesis we investigate different ways of approximating the solution of the chemical master equation (CME). The CME is a system of differential equations that models the stochastic transient behaviour of biochemical reaction networks. It does so by d ...
We present the Walsh theory of stochastic integrals with respect to martingale measures, and various extensions of this theory, alongside of the Da Prato and Zabczyk theory of stochastic integrals with respect to Hilbert-space-valued Wiener processes, and ...
B-series are a fundamental tool in practical and theoretical aspects of numerical integrators for ordinary differential equations. A composition law for B-series permits an elegant derivation of order conditions, and a substitution law gives much insight i ...