A natural-norm Successive Constraint Method for inf-sup lower bounds
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynamical systems. The reduced model over the whole parameter space is built by combining surrogates in frequency only, built at few selected values of the param ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
The last few years have experienced the emergence of Industry 4.0 (I4.0), ultra-customization, and the explosion of demand for ethical, fair trade, and sustainable consumption. Organizations have therefore started a digital transformation of their SCs and ...
Curie's principle states that "when effects show certain asymmetry, this asymmetry must be found in the causes that gave rise to them." We demonstrate that symmetry equivariant neural networks uphold Curie's principle and can be used to articulate many sym ...
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
In many transportation systems, a mismatch between the associated design and planning decisions and the demand is typically encountered. A tailored system is not only appealing to operators, which could have a better knowledge of their operational costs, b ...
We propose Kernel Predictive Control (KPC), a learning-based predictive control strategy that enjoys deterministic guarantees of safety. Noise-corrupted samples of the unknown system dynamics are used to learn several models through the formalism of non-pa ...