treeKL: A distance between high dimension empirical distributions
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivariant ma ...
The availability of massive volumes of data and recent advances in data collection and processing platforms have motivated the development of distributed machine learning algorithms. In numerous real-world applications large datasets are inevitably noisy a ...
We study the problem of constructing epsilon-coresets for the (k, z)-clustering problem in a doubling metric M(X, d). An epsilon-coreset is a weighted subset S subset of X with weight function w : S -> R->= 0, such that for any k-subset C is an element of ...
Background: Miscellaneous features from various domains are accepted to be associated with the risk of falling in the elderly. However, only few studies have focused on establishing clinical tools to predict the risk of the first fall onset. A model that w ...
We consider the problem of testing graph cluster structure: given access to a graph G = (V, E), can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a generali ...
Complexity is a double-edged sword for learning algorithms when the number of available samples for training in relation to the dimension of the feature space is small. This is because simple models do not sufficiently capture the nuances of the data set, ...
We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite matrices i ...
Detection of fidgeting activities is a field which has not been much explored as of now. Studies have shown that fidgeting has a beneficial impact on people’s healthiness as it burns a significant amount of energy. Being able to detect when someone is fidg ...
We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite matrices i ...