Filtrage collaboratifvignette|Illustration d'un filtrage collaboratif où un système de recommandation doit prédire l'évaluation d'un objet par un utilisateur en se basant sur les évaluations existantes. Le filtrage collaboratif (de l’anglais : en) regroupe l'ensemble des méthodes qui visent à construire des systèmes de recommandation utilisant les opinions et évaluations d'un groupe pour aider l'individu. Il existe trois principaux axes de recherche dans ce domaine, dépendant chacun des données recueillies sur les utilisateurs du système : le filtrage collaboratif actif ; le filtrage collaboratif passif ; le filtrage basé sur le contenu.
Recherche d'image par le contenuLa recherche d'image par le contenu (en anglais : content-based image retrieval ou CBIR) est une technique permettant de rechercher des images à partir de ses caractéristiques visuelles, c'est-à-dire induite de leurs pixels. Les images sont classiquement décrites comme rendant compte de leur texture, couleur, forme. Un cas typique d'utilisation est la recherche par l'exemple où l'on souhaite retrouver des images visuellement similaires à un exemple donné en requête.
Analyse sémantique latenteL’analyse sémantique latente (LSA, de l'anglais : Latent semantic analysis) ou indexation sémantique latente (ou LSI, de l'anglais : Latent semantic indexation) est un procédé de traitement des langues naturelles, dans le cadre de la sémantique vectorielle. La LSA fut brevetée en 1988 et publiée en 1990. Elle permet d'établir des relations entre un ensemble de documents et les termes qu'ils contiennent, en construisant des « concepts » liés aux documents et aux termes.
Système de recommandationLes systèmes de recommandation sont une forme spécifique de filtrage de l'information (SI) visant à présenter les éléments d'information (films, musique, livres, news, images, pages Web, etc) qui sont susceptibles d'intéresser l'utilisateur. Généralement, un système de recommandation permet de comparer le profil d'un utilisateur à certaines caractéristiques de référence, et cherche à prédire l'« avis » que donnerait un utilisateur.
Plongement lexicalLe plongement lexical (« word embedding » en anglais) est une méthode d'apprentissage d'une représentation de mots utilisée notamment en traitement automatique des langues. Le terme devrait plutôt être rendu par vectorisation de mots pour correspondre plus proprement à cette méthode. Cette technique permet de représenter chaque mot d'un dictionnaire par un vecteur de nombres réels. Cette nouvelle représentation a ceci de particulier que les mots apparaissant dans des contextes similaires possèdent des vecteurs correspondants qui sont relativement proches.
Similarité sémantiqueLa similarité sémantique est une notion définie entre deux concepts soit au sein d'une même hiérarchie conceptuelle, soit - dans le cas d'alignement d'ontologies - entre deux concepts appartenant respectivement à deux hiérarchies conceptuelles distinctes. La similarité sémantique indique que ces deux concepts possèdent un grand nombre d'éléments en commun (propriétés, termes, instances). D’un point de vue psychologie cognitive, les notions de proximité et de similarité sont bien distinctes.
Word2vecEn intelligence artificielle et en apprentissage machine, Word2vec est un groupe de modèles utilisé pour le plongement lexical (word embedding). Ces modèles ont été développés par une équipe de recherche chez Google sous la direction de . Ce sont des réseaux de neurones artificiels à deux couches entraînés pour reconstruire le contexte linguistique des mots. La méthode est implémentée dans la bibliothèque Python Gensim. Deux architectures ont été initialement proposées pour apprendre les Word2vec, le modèle de sacs de mots continus (CBOW: continuous bag of words) et le modèle skip-gram.
Distributional semanticsDistributional semantics is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data. The basic idea of distributional semantics can be summed up in the so-called distributional hypothesis: linguistic items with similar distributions have similar meanings. The distributional hypothesis in linguistics is derived from the semantic theory of language usage, i.
Personalization management systemA personalization management system (PMS) is an integrated software solution that enables users in an organization to manage and deliver personalized messages, campaigns, and interactive experiences to consumers across different communications channels and devices. The term PMS was first used in a 2003 study on personalization, but it was later popularized by the startup Croct, which was the first company to use the term PMS to distinguish the emerging category of platforms and technologies focused on delivering personalized customer experiences.
Gestion de contenu d'entrepriseLa gestion de contenu d'entreprise (en anglais Enterprise Content Management : ECM) vise à gérer l'ensemble des contenus d'une organisation. Il s'agit de prendre en compte sous forme électronique les informations qui ne sont pas structurées, comme les documents électroniques, par opposition à celles déjà structurées dans les bases de données. Elle comprend les phases de création/capture, stockage, indexation, gestion, nettoyage, distribution, publication, recherche et archivage, en faisant le lien du contenu avec les processus métier.