**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Transfer Learning of Visual Concepts across Robots: a Discriminative Approach

Résumé

While there is a general consensus that autonomous robots should be able to learn continuously over time, the learning process is traditionally envisioned for each specific robot situated in a given environment. This does not consider the fact that robots performing similar tasks in similar settings would probably learn similar concepts. They would therefore benefit by sharing their prior experience with each other. In this paper we present a transfer learning algorithm that enables robots located in different places to take advantage of each other’s experience, boosting the learning process. We specifically assume to have robots equipped with a camera. We do not make any assumption on the type of camera, nor on where it is positioned. We also assume that the robots use the same feature descriptors and learning algorithms. Under these assumptions, we show that one robot can hugely benefit from what has been learned by peer robots performing similar tasks. The advantage concretely means a consistent boost in performance, especially when training data is scarce. Our algorithm is based on Least Square Support Vector Machine, and allows to determine automatically from where to transfer and how much to transfer: this makes it possible to take advantage of the prior when it is useful, while minimizing the risk of negative transfer when the priors are not informative. Thorough experiments on four different publicly available databases show the power of our approach.

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées (4)

MOOCs associés (5)

Concepts associés (4)

Algorithme

thumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.

Apprentissage

L’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.

Apprentissage automatique

L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.

Machine Learning is a modern and actively developing field of computer science, devoted to extracting and estimating dependencies from empirical data. It combines such fields as statistics, optimization theory and artificial intelligence. In practical tasks, the general aim of Machine Learning is to construct algorithms able to generalize and predict in previously unseen situations based on some set of examples. Given some finite information, Machine Learning provides ways to exract knowledge, describe, explain and predict from data. Kernel Methods are one of the most successful branches of Machine Learning. They allow applying linear algorithms with well-founded properties such as generalization ability, to non-linear real-life problems. Support Vector Machine is a well-known example of a kernel method, which has found a wide range of applications in data analysis nowadays. In many practical applications, some additional prior knowledge is often available. This can be the knowledge about the data domain, invariant transformations, inner geometrical structures in data, some properties of the underlying process, etc. If used smartly, this information can provide significant improvement to any data processing algorithm. Thus, it is important to develop methods for incorporating prior knowledge into data-dependent models. The main objective of this thesis is to investigate approaches towards learning with kernel methods using prior knowledge. Invariant learning with kernel methods is considered in more details. In the first part of the thesis, kernels are developed which incorporate prior knowledge on invariant transformations. They apply when the desired transformation produce an object around every example, assuming that all points in the given object share the same class. Different types of objects, including hard geometrical objects and distributions are considered. These kernels were then applied for images classification with Support Vector Machines. Next, algorithms which specifically include prior knowledge are considered. An algorithm which linearly classifies distributions by their domain was developed. It is constructed such that it allows to apply kernels to solve non-linear tasks. Thus, it combines the discriminative power of support vector machines and the well-developed framework of generative models. It can be applied to a number of real-life tasks which include data represented as distributions. In the last part of the thesis, the use of unlabelled data as a source of prior knowledge is considered. The technique of modelling the unlabelled data with a graph is taken as a baseline from semi-supervised manifold learning. For classification problems, we use this apporach for building graph models of invariant manifolds. For regression problems, we use unlabelled data to take into account the inner geometry of the input space. To conclude, in this thesis we developed a number of approaches for incorporating some prior knowledge into kernel methods. We proposed invariant kernels for existing algorithms, developed new algorithms and adapted a technique taken from semi-supervised learning for invariant learning. In all these cases, links with related state-of-the-art approaches were investigated. Several illustrative experiments were carried out on real data on optical character recognition, face image classification, brain-computer interfaces, and a number of benchmark and synthetic datasets.

Learning from experience and adapting to changing stimuli are fundamental capabilities for artificial cognitive systems. This calls for on-line learning methods able to achieve high accuracy while at the same time using limited computer power. Research on autonomous agents has been actively investigating these issues, mostly using probabilistic frameworks and within the context of navigation and learning by imitation. Still, recent results on robot localization have clearly pointed out the potential of discriminative classifiers for cognitive systems. In this paper we follow this approach and propose an on-line version of the Support Vector Machine (SVM) algorithm. Our method, that we call On-line Independent SVM, builds a solution on-line, achieving an excellent accuracy vs.~compactness trade-off. In particular the size of the obtained solution is always bounded, implying a bounded testing time. At the same time, the algorithm converges to the optimal solution at each incremental step, as opposed to similar approaches where optimality is achieved in the limit of infinite number of training data. These statements are supported by experiments on standard benchmark databases as well as on two real-world applications, namely $(a)$ place recognition by a mobile robot in an indoor environment, and $(b)$ human grasping posture classification.

Machine Learning is a modern and actively developing field of computer science, devoted to extracting and estimating dependencies from empirical data. It combines such fields as statistics, optimization theory and artificial intelligence. In practical tasks, the general aim of Machine Learning is to construct algorithms able to generalize and predict in previously unseen situations based on some set of examples. Given some finite information, Machine Learning provides ways to exract knowledge, describe, explain and predict from data. Kernel Methods are one of the most successful branches of Machine Learning. They allow applying linear algorithms with well-founded properties such as generalization ability, to non-linear real-life problems. Support Vector Machine is a well-known example of a kernel method, which has found a wide range of applications in data analysis nowadays. In many practical applications, some additional prior knowledge is often available. This can be the knowledge about the data domain, invariant transformations, inner geometrical structures in data, some properties of the underlying process, etc. If used smartly, this information can provide significant improvement to any data processing algorithm. Thus, it is important to develop methods for incorporating prior knowledge into data-dependent models. The main objective of this thesis is to investigate approaches towards learning with kernel methods using prior knowledge. Invariant learning with kernel methods is considered in more details. In the first part of the thesis, kernels are developed which incorporate prior knowledge on invariant transformations. They apply when the desired transformation produce an object around every example, assuming that all points in the given object share the same class. Different types of objects, including hard geometrical objects and distributions are considered. These kernels were then applied for images classification with Support Vector Machines. Next, algorithms which specifically include prior knowledge are considered. An algorithm which linearly classifies distributions by their domain was developed. It is constructed such that it allows to apply kernels to solve non-linear tasks. Thus, it combines the discriminative power of support vector machines and the well-developed framework of generative models. It can be applied to a number of real-life tasks which include data represented as distributions. In the last part of the thesis, the use of unlabelled data as a source of prior knowledge is considered. The technique of modelling the unlabelled data with a graph is taken as a baseline from semi-supervised manifold learning. For classification problems, we use this apporach for building graph models of invariant manifolds. For regression problems, we use unlabelled data to take into account the inner geometry of the input space. To conclude, in this thesis we developed a number of approaches for incorporating some prior knowledge into kernel methods. We proposed invariant kernels for existing algorithms, developed new algorithms and adapted a technique taken from semi-supervised learning for invariant learning. In all these cases, links with related state-of-the-art approaches were investigated. Several illustrative experiments were carried out on real data on optical character recognition, face image classification, brain-computer interfaces, and a number of benchmark and synthetic datasets.