Publication

A Fast Parts-based Approach to Speaker Verification using Boosted Slice Classifiers

Résumé

Speaker verification on portable devices like smartphones is gradually becoming popular. In this context, two issues need to be considered: 1) such devices have relatively limited computation resources, and 2) they are liable to be used everywhere, possibly in very noisy, uncontrolled environments. This work aims to address both these issues by proposing a computationally efficient yet robust speaker verification system. This novel parts-based system draws inspiration from face and object detection systems in the computer vision domain. The system involves boosted ensembles of simple threshold-based classifiers. It uses a novel set of features extracted from speech spectra, called “slice features”. The performance of the proposed system was evaluated through extensive studies involving a wide range of experimental conditions using the TIMIT, HTIMIT and MOBIO corpus, against standard cepstral features and Gaussian Mixture Model-based speaker verification systems.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (30)
Vision par ordinateur
La vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Feature (computer vision)
In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Corner detection
Corner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, , video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection. A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point.
Afficher plus
Publications associées (39)

Improving Object Detection under Domain Shifts

Vidit Vidit

Object detection plays a critical role in various computer vision applications, encompassingdomains like autonomous vehicles, object tracking, and scene understanding. These applica-tions rely on detectors that generate bounding boxes around known object c ...
EPFL2023

Burst Vision Using Single-Photon Cameras

Edoardo Charbon, Paul Mos, Mohit Gupta

Single-photon avalanche diodes (SPADs) are novel image sensors that record the arrival of individual photons at extremely high temporal resolution. In the past, they were only available as single pixels or small-format arrays, for various active imaging ap ...
IEEE COMPUTER SOC2023

LSSANet: A Long Short Slice-Aware Network for Pulmonary Nodule Detection

Jiancheng Yang, Bo Du, Rui Xu

Convolutional neural networks (CNNs) have been demonstrated to be highly effective in the field of pulmonary nodule detection. However, existing CNN based pulmonary nodule detection methods lack the ability to capture long-range dependencies, which is vita ...
SPRINGER INTERNATIONAL PUBLISHING AG2022
Afficher plus