A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a framework built from two Hierarchical Bayesian topic models to discover human location-driven routines from mobile phones. The framework uses location-driven bag representations of people's daily activities obtained from celltower connections. ...
We present a framework built from two Hierarchical Bayesian topic models to discover human location-driven routines from mobile phones. The framework uses location-driven bag representations of people's daily activities obtained from celltower connections. ...
Conventional sampling (Shannon's sampling formulation and its approximation-theoretic counterparts) and interpolation theories provide effective solutions to the problem of reconstructing a signal from its samples, but they are primarily restricted to the ...
Sparse approximations to Bayesian inference for nonparametric Gaussian Process models scale linearly in the number of training points, allowing for the application of powerful kernel-based models to large datasets. We present a general framework based on t ...
In this paper, we study the problem of content-based social network discovery among people who frequently appear in world news. Google news is used as the source of data. We describe a probabilistic framework for associating people with groups. A low-dimen ...
The PLSI model (“Probabilistic Latent Semantic Indexing”) offers a document indexing scheme based on probabilistic latent category models. It entailed applications in diverse fields, notably in information retrieval (IR). Nevertheless, PLSI cannot process d ...
In this paper, we study the problem of content-based social network discovery among people who frequently appear in world news. Google news is used as the source of data. We describe a probabilistic framework for associating people with groups. A low-dimen ...
This work proposes a new approach to the retrieval of images from text queries. Contrasting with previous work, this method relies on a discriminative model: the parameters are selected in order to minimize a loss related to the ranking performance of the ...
Image auto-annotation, i.e., the association of words to whole images, has attracted considerable attention. In particular, unsupervised, probabilistic latent variable models of text and image features have shown encouraging results, but their performance ...
A robust filter is designed for uncertain discrete time models. The filter is based on a regularized solution and guarantees minimum state error variance. Simulation results confirm its superior performance over other robust filter designs. ...