Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Dynamic granularity estimation is a new technique for automatically identifying expressions in functional languages for parallel evaluation. Expressions with little computation relative to thread-creation costs should evaluate sequentially for maximum performance. Static identification of such threads is however difficult. Therefore, dynamic granularity estimation has compile-time and run-time components: Abstract interpretation statically identifies functions whose complexity depends on data structure sizes; the run-time system maintains approximations to these sizes. Compiler-inserted checks consult this size information to make thread creation decisions dynamically.We describe dynamic granularity estimation for a list-based functional language. Extension to general recursive data structures and imperative operations is possible. Performance measurements of dynamic granularity estimation in a parallel ML implementation on a shared-memory machine demonstrate the possibility of large reductions (>20%) in execution time.
Wenzel Alban Jakob, Tizian Lucien Zeltner, Delio Aleardo Vicini, Merlin Eléazar Nimier-David
Anthony Christopher Davison, Raphaël Gérard Théodore Michel Marie de Deloÿe et Fourcade de Fondeville