Publication

Using the Run-Time Sizes of Data Structures to Guide Parallel-Thread Creation

James Richard Larus
1994
Article de conférence
Résumé

Dynamic granularity estimation is a new technique for automatically identifying expressions in functional languages for parallel evaluation. Expressions with little computation relative to thread-creation costs should evaluate sequentially for maximum performance. Static identification of such threads is however difficult. Therefore, dynamic granularity estimation has compile-time and run-time components: Abstract interpretation statically identifies functions whose complexity depends on data structure sizes; the run-time system maintains approximations to these sizes. Compiler-inserted checks consult this size information to make thread creation decisions dynamically.We describe dynamic granularity estimation for a list-based functional language. Extension to general recursive data structures and imperative operations is possible. Performance measurements of dynamic granularity estimation in a parallel ML implementation on a shared-memory machine demonstrate the possibility of large reductions (>20%) in execution time.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.