One of the approaches to solve the heat load problem in a divertor tokamak is the so called 'snowflake' (SF) configuration, a magnetic equilibrium with two nearby x-points and two additional divertor legs. Here we report on the first EMC3-Eirene simulations of plasma-and neutral particle transport in the scrape-off layer of a series of TCV SF equilibria with different values of sigma, the distance between the x-points normalized to the minor radius of the plasma. The constant cross-field transport coefficients were chosen such that the power-and particle deposition profiles at the primary inner strike point (SP) match the Langmuir probe measurements for the sigma = 0.1 case. At the secondary SP on the floor, however, a significantly larger power flux than that predicted by the simulation was measured by the probes, indicating an enhanced transport across the primary separatrix. As the ideal SF configuration (sigma = 0) is approached, the density as well as the radiation maximum are predicted to move from the target plates upward to the x-point by the simulation.
Anja Skrivervik, Stéphanie Lacour, Zvonimir Sipus, Mingxiang Gao, German Augusto Ramirez Arroyave, Kangling Wu
Holger Reimerdes, Christian Gabriel Theiler, Umar Sheikh, Artur Perek, Marco Wischmeier, Bernhard Sieglin