Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we detail a method for domain specific, multi-category emotion recognition, based on human computation. We create an Amazon Mechanical Turk1 task that elicits emotion labels and phrase-emotion associations from the participants. Using the proposed method, we create an emotion lexicon, compatible with the 20 emotion categories of the Geneva Emotion Wheel. GEW is the first computational resource that can be used to assign emotion labels with such a high level of granularity. Our emotion annotation method also produced a corpus of emotion labeled sports tweets. We compared the crossvalidated version of the lexicon with existing resources for both the positive/negative and multi-emotion classification problems. We show that the presented domain-targeted lexicon outperforms the existing general purpose ones in both settings. The performance gains are most pronounced for the fine-grained emotion classification, where we achieve an accuracy twice higher than the benchmark.2
Robert West, Andreas Oliver Spitz, Ahmad Abu-Akel
,
Maëlan Quentin Menétrey, Gelareh Mohammadi