Séquençage shotgunEn génétique, le séquençage shotgun (littéralement séquençage "fusil de chasse") est une méthode utilisée pour séquencer des brins d'ADN aléatoires. On l'appelle ainsi par analogie avec le modèle de tir quasi-aléatoire en pleine expansion d'un fusil de chasse : cette métaphore illustre le caractère aléatoire de la fragmentation initiale de l'ADN génomique où l'on "arrose" tout le génome, un peu comme se dispersent les plombs de ce type d'arme à feu.
Exome sequencingExome sequencing, also known as whole exome sequencing (WES), is a genomic technique for sequencing all of the protein-coding regions of genes in a genome (known as the exome). It consists of two steps: the first step is to select only the subset of DNA that encodes proteins. These regions are known as exons—humans have about 180,000 exons, constituting about 1% of the human genome, or approximately 30 million base pairs. The second step is to sequence the exonic DNA using any high-throughput DNA sequencing technology.
ChIP-SeqLe séquençage ChIP-Seq, également connu en tant que séquençage ChIP, est une méthode utilisée pour analyser les interactions entre protéines et l'ADN. Le ChIP-Seq est une technique permettant d’étudier les interactions ADN/protéine à l’échelle du génome. Il s'agit d'une approche basée sur une technique innovante de séquençage qui permet de déterminer rapidement la séquence des fragments immunoprécipités par immunoprécipitation de chromatine (ChIP). Cette technique, dite de ChIP-Seq, fut publiée en 2007 par l’équipe du Prof.
Immunoprécipitation de chromatineL'immunoprécipitation de la chromatine est une méthode qui permet de déterminer les sites de liaison de l'ADN sur le génome pour une protéine particulière et donne accès à une représentation des interactions protéine–ADN qui ont lieu dans le noyau de la cellule vivante ou dans les tissus. La mise en œuvre in vivo de cette méthode est bien différente de celles qui sont généralement utilisées. Le principe à la base de ce procédé est que les protéines qui se lient à l'ADN (y compris les facteurs de transcription et les histones) peuvent être réticulées avec l'ADN auquel elles sont liées.
Séquençage de l'ADNcadre|Résultat du séquençage par la méthode de Sanger. L'ordre de chaque bande indique la position d'un nucléotide A,T,C ou G Le séquençage de l'ADN consiste à déterminer l'ordre d'enchaînement des nucléotides pour un fragment d’ADN donné. La séquence d’ADN contient l’information nécessaire aux êtres vivants pour survivre et se reproduire. Déterminer cette séquence est donc utile aussi bien pour les recherches visant à savoir comment vivent les organismes que pour des sujets appliqués.
TranscriptomiqueLa transcriptomique est l'étude de l'ensemble des ARN messagers produits lors du processus de transcription d'un génome. Elle repose sur la quantification systématique de ces ARNm, ce qui permet d'avoir une indication relative du taux de transcription de différents gènes dans des conditions données. Plusieurs techniques permettent d'avoir accès à cette information, en particulier celle des puces à ADN, celle de la PCR quantitative ou encore celle du séquençage systématique d'ADN complémentaires. Métatransc
Whole genome sequencingWhole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. Whole genome sequencing has largely been used as a research tool, but was being introduced to clinics in 2014.
Massive parallel sequencingMassive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation sequencing. Some of these technologies emerged between 1993 and 1998 and have been commercially available since 2005. These technologies use miniaturized and parallelized platforms for sequencing of 1 million to 43 billion short reads (50 to 400 bases each) per instrument run.
Clinical metagenomic sequencingClinical metagenomic next-generation sequencing (mNGS) is the comprehensive analysis of microbial and host genetic material (DNA or RNA) in clinical samples from patients by next-generation sequencing. It uses the techniques of metagenomics to identify and characterize the genome of bacteria, fungi, parasites, and viruses without the need for a prior knowledge of a specific pathogen directly from clinical specimens.
Third-generation sequencingThird-generation sequencing (also known as long-read sequencing) is a class of DNA sequencing methods currently under active development. Third generation sequencing technologies have the capability to produce substantially longer reads than second generation sequencing, also known as next-generation sequencing. Such an advantage has critical implications for both genome science and the study of biology in general. However, third generation sequencing data have much higher error rates than previous technologies, which can complicate downstream genome assembly and analysis of the resulting data.