We present the Leon verification system for a subset of the Scala programming language. Along with several functional features of Scala, Leon supports imperative constructs such as mutations and loops, using a translation into recursive functional form. Both properties and programs in Leon are expressed in terms of user-defined functions. We discuss several techniques that led to an efficient semi-decision procedure for first-order constraints with recursive functions, which is the core solving engine of Leon. We describe a generational unrolling strategy for recursive templates that yields smaller satisfiable formulas and ensures completeness for counterexamples. We illustrate the current capabilities of Leon on a set of examples, such as data structure implementations; we show that Leon successfully finds bugs or proves completeness of pattern matching as well as validity of function postconditions.
Viktor Kuncak, Mario Bucev, Dragana Milovancevic, Samuel Chassot
Martin Odersky, Yichen Xu, Aleksander Slawomir Boruch-Gruszecki