Accurate Directional Inference for Vector Parameters in Linear Exponential Families
Publications associées (54)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis, we focus on standard classes of problems in numerical optimization: unconstrained nonlinear optimization as well as systems of nonlinear equations. More precisely, we consider two types of unconstrained nonlinear optimization problems. On t ...
The scores returned by support vector machines are often used as a confidence measures in the classification of new examples. However, there is no theoretical argument sustaining this practice. Thus, when classification uncertainty has to be assessed, it i ...
The scores returned by support vector machines are often used as a confidence measures in the classification of new examples. However, there is no theoretical argument sustaining this practice. Thus, when classification uncertainty has to be assessed, it i ...
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties ...
We consider an estimation procedure for discrete choice models in general and Multivariate Extreme Value (MEV) models in particular. It is based on a pseudo-likelihood function, generalizing the Conditional Maximum Likelihood (CML) estimator by Manski and ...
We present a competitive analysis of some non-parametric Bayesian algorithms in a worst-case online learning setting, where no probabilistic assumptions about the generation of the data are made. We consider models which use a Gaussian process prior (over ...
We propose and validate a model for pedestrian walking behavior, based on discrete choice modeling. Two main behaviors are identified: unconstrained and constrained. The constrained patterns are captured by a leader-follower model and by a collision avoida ...
In this paper we propose a general framework for pedestrian walking behavior, based on discrete choice modeling. Two main behaviors are identified: unconstrained and constrained. The constrained patterns are further classified into attractive interactions ...
We consider an estimation procedure for discrete choice models in general and Generalized Extreme Value (GEV) models in particular. It is based on a pseudo-likelihood function, generalizing the Conditional Maximum Likelihood (CML) estimator by Manski and M ...
In this contribution, the Bayesian framework for interpretation of evidence when applied to forensic speaker recognition is introduced. Different aspects of the use of voice as evidence in the court are addressed, as well as the use by the forensic expert ...