Semi-supervised and unsupervised kernel-based novelty detection with application to remote sensing images
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we explore various approaches for semi-
supervised learning in an end-to-end automatic speech recog-
nition (ASR) framework. The first step in our approach in-
volves training a seed model on the limited amount of labelled
data. Additional u ...
Background Periventricular leukoaraiosis may be an important pathological change in postural instability gait disorder (PIGD), a motor subtype of Parkinson's disease (PD). Clinical diagnosis of PIGD may be challenging for the general neurologist. Purpose T ...
Multimedia databases are growing rapidly in size in the digital age. To increase the value of these data and to enhance the user experience, there is a need to make these videos searchable through automatic indexing. Because people appearing and talking in ...
Data from animal-borne inertial sensors are widely used to investigate several aspects of an animal's life, such as energy expenditure, daily activity patterns and behaviour. Accelerometer data used in conjunction with machine learning algorithms have b ...
Time series constitute a challenging data type for machine learning algorithms, due to their highly variable lengths and sparse labeling in practice. In this paper, we tackle this challenge by proposing an unsupervised method to learn universal embeddings ...
A fundamental problem arising in many areas of machine learning is the evaluation of the likelihood of a given observation under different nominal distributions. Frequently, these nominal distributions are themselves estimated from data, which makes them s ...
The Web became the central medium for valuable sources of information fusion applications. However, such user-generated resources are often plagued by inaccuracies and misinformation as a result of the inherent openness and uncertainty of the Web. While fi ...
In the Internet of Things (IoT), the large volume of data generated by sensors poses significant computational challenges in resource-constrained environments. Most existing machine learning algorithms are unable to train a proper model using a significant ...
We identify and address three research gaps in the field of vessel segmentation for funduscopy. The first focuses on the task of inference on high-resolution fundus images for which only a limited set of ground-truth data is publicly available. Notably, we ...
Automated analyses of the outcome of a simulation have been an important part of atomistic modeling since the early days, addressing the need of linking the behavior of individual atoms and the collective properties that are usually the final quantity of i ...