Benefits Of Consistency In Image Denoising With Steerable Wavelets
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We introduce an integrated framework for detecting brain activity from fMRI data, which is based on a spatial discrete wavelet transform. Unlike the standard wavelet-based approach for fMRI analysis, we apply the suitable statistical test procedure in the ...
I. Introduction Wavelets are the result of collective efforts that recognized common threads between ideas and concepts that had been independently developed and investigated by distinct research communities. They provide a unifying framework for decompos ...
The ridgelet transform (Candes and Donoho, 1999) was introduced as a new multiscale representation for functions on continuous spaces that are smooth away from discontinuities along lines. In this paper, we present several discrete versions of the ridgelet ...
We use a comprehensive set of non-redundant orthogonal wavelet transforms and apply a denoising method called SUREshrink in each individual wavelet subband to denoise images corrupted by additive Gaussian white noise. We show that, for various images and a ...
The method of wavelet thresholding for removing noise, or denoising, has been researched extensively due to its effectiveness and simplicity. Much of the literature has focused on developing the best uniform threshold or best basis selection. However, not ...
In this work, we study the effect of inserting spatially local temporal adaptivity to motion compensated frame adaptive transforms for video coding. Motion compensation aligns the temporal wavelet decomposition along motion trajectories. However, valid tra ...
Complex wavelet transforms offer the opportunity to perform directional and coherent processing based on the local magnitude and phase of signals and images. Although denoising, segmentation, and image enhancement are significantly improved using complex w ...
Musical and audio signals in general form a major part of the large amount of data exchange taking place in our information-based society. Transmission of high quality audio signals through narrow-band channels, such as the Internet, requires refined metho ...
The first part of this paper proposes an adaptive, data-driven threshold for image denoising via wavelet soft-thresh- olding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distr ...
The ridgelet transform (Candès and Donoho, 1999) was introduced as a sparse expansion for functions on continuous spaces that are smooth away from discontinuities along lines. In this paper, we propose an or- thonormal version of the ridgelet transform for ...