A Primal-Dual Algorithmic Framework for Constrained Convex Minimization
Publications associées (43)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose a new self-adaptive and double-loop smoothing algorithm to solve composite, nonsmooth, and constrained convex optimization problems. Our algorithm is based on Nesterov’s smoothing technique via general Bregman distance functions. It self-adaptiv ...
We propose a new and low per-iteration complexity first-order primal-dual optimization framework for a convex optimization template with broad applications. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap fu ...
In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8 (EC8). However, a lack of accuracy of the N2 method in certain conditio ...
This manuscript extends the relaxation theory from nonlinear elasticity to electromagnetism and to actions defined on paths of differential forms. The introduction of a gauge allows for a reformulation of the notion of quasiconvexity in Bandyopadhyay et al ...
An alternative approach for real-time network-wide traffic control in cities that has recently gained a lot of interest is perimeter flow control. The basic concept of such an approach is to partition heterogeneous cities into a small number of homogeneous ...
Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most s ...
A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed fo ...
This technical note discusses convergence conditions of a generalized variant of primal-dual interior point methods. The generalization arises due to the permitted case of having a non-uniform complementarity perturbation vector, which is equivalent to hav ...
We propose a conditional gradient framework for a composite convex minimization template with broad applications. Our approach combines the notions of smoothing and homotopy under the CGM framework, and provably achieves the optimal O(1/sqrt(k)) convergenc ...
This paper describes synthesis of controllers involving Quadratic Programming (QP) optimization problems for control of nonlinear systems. The QP structure allows an implementation of the controller as a piecewise affine function, pre-computed offline, whi ...