DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide ...
DNA mechanics plays a crucial role in many biological processes, including nucleosome positioning and protein-DNA interactions. It is believed that nature employs epigenetic modifications in DNA to further regulate gene expression. Moreover, double-strande ...
DNA fragmentation is an essential process in developing genetic sequencing strategies, genetic research, as well as for the diagnosis of diseases with a genetic signature like cancer. Efficient on-chip DNA fragmentation protocols would be beneficial to pro ...
Next-generation sequencing (NGS) is an essential technology for DNA identification in genomic research. DNA fragmentation is a critical step for NGS and doing this on-chip is of great interest for future integrated genomic solutions. Here we demonstrate fa ...
Difficulties to replicate telomeres - the ends of our chromosomes - can cause telomere shortening and
genome instability. These difficulties are due to the repetitive DNA sequence and distinct structures at telomeres
that challenge the semi-conservative DN ...
Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degrad ...
Biologically inspired solid-state nanopores are artificial openings or apertures in thin membranes similar to natural protein ion channels in a lipid bilayer of cell membranes. In solid-state nanopores, a thin insulating membrane with single or multiple po ...
Recognition of pathogen-derived molecules through germline-encoded receptors is a fundamental principle of innate immunity. Pattern recognition receptors detect specific intracellular danger signals to trigger potent immune responses. The DNA sensor cyclic ...
Natural competence for transformation is an important driver of horizontal DNA exchange between different organisms. This can result in accumulation of dangerous genetic features, such as antibiotic resistance genes, in a single organism. One example of an ...
Genetic variations affect behavior and cause disease but understanding how these variants drive complex traits is still an open question. A common approach is to link the genetic variants to intermediate molecular phenotypes such as the transcriptome using ...